Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38692473

RESUMEN

BACKGROUND: The basal ganglia are important structures for the release of dopamine in the limbic circuits of the midbrain, and the striatum and globus pallidus are the major nuclei of the basal ganglia, and the dysfunction of these regions has been the basis of many models that have attempted to explain the underlying mechanisms of schizophrenia symptoms. The purpose of this study was to investigate the changes in the volume of the striatum subregion and globus pallidus in three different stages of schizophrenia, and to analyze whether these volume changes were related to antipsychotic drugs and schizophrenia symptoms. METHODS: In this study, we investigated the volume of the striatum and globus pallidus in patients with schizophrenia at three different stages. The study included 57 patients with first-episode schizophrenia (FSZ), 51 patients with early-stage schizophrenia (ESZ), 86 patients with chronic schizophrenia (CSZ), and 191 healthy controls (HC), all of whom underwent structured magnetic resonance imaging (MRI) scans. Covariance analysis was performed using SPSS 26.0 was used for covariance analysis to determine whether there were significant differences in striatal subregion and globus pallidus volume between groups, and stratified analysis was used to further eliminate the effect of age on brain volume. Finally, the correlation analysis between the region of interest and the cumulative dose of antipsychotic drugs and psychotic symptoms was performed. RESULTS: The comparison between the different stages of the illness showed significant volume differences in the left caudate nucleus (lCAU) (F = 2.665, adjusted p = 0.048), left putamen (lPUT) (F = 12.749, adjusted p < 0.001), left pallidum (lPAL) (F = 41.111, adjusted p < 0.001), and right pallidum (rPAL) (F = 14.479, adjusted p < 0.001). Post-hoc analysis with corrections showed that the volume differences in the lCAU subregion disappeared. Further stratified analysis controlling for age showed that compared with the HC, the lPAL (t = 4.347, p < 0.001) was initially significantly enlarged in the FSZ group, the lPUT (t = 4.493, p < 0.001), rPUT (t = 2.190, p = 0.031), lPAL (t = 7.894, p < 0.001), and rPAL (t = 4.983, p < 0.001) volumes were all significantly increased in the ESZ group, and the lPUT (t = 3.314, p = 0.002), lPAL (t = 6.334, p < 0.001), and rPAL (t = 3.604, p < 0.001) subregion volumes were also significantly increased in the CSZ group. Correlation analysis showed that lPUT and bilateral globus pallidus were associated with cumulative dose of antipsychotics, but were not associated with clinical symptoms in each subregion. CONCLUSION: The findings suggest that different subregions of the striatum and globus pallidus show significant volume differences at different stages of schizophrenia compared to HC. These volume differences may be strong radiographic evidence for schizophrenia. In addition, the lPAL was the only significantly different brain region observed in the FSZ group, suggesting that it may be a sensitive indicator of early brain structural changes in schizophrenia. Finally, our findings support the hypothesis that antipsychotic drugs have an effect on the volume of brain structures.

2.
Chemosphere ; 354: 141582, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462179

RESUMEN

Photocatalytic technologies based on molybdenum disulfide (MoS2) catalysts are effective, eco-friendly, and promising for antibiotic pollutants treatment. The technologies used by MoS2-based nanocomposites and aerogels for efficient degradation of antibiotics are reviewed in detail for the first time in this paper. The fundamental aspects of MoS2 were comprehensively scrutinized, encompassing crystal structure, optical properties, and photocatalytic principle. Then, the main synthesized methods and advantages/disadvantages for the preparation of MoS2-based nanocomposites and aerogels were systematically presented. Besides, a comprehensive overview of diverse MoS2-based nanocomposites and aerogels photo-degradation systems that enhanced the degradation of antibiotic pollutants were revealed. Meanwhile, the photo-degradation mechanism concentrated on the photoelectron transfer pathways and reactive oxygen species (ROS) were systematically evaluated. Finally, the challenges and perspectives for deeply development of MoS2-based nanocomposites and aerogels were discussed. This review may help researchers to deeply understand the research status of MoS2-based nanocomposites and aerogels for antibiotics removal, and makes clear the photo-degradation mechanism from photoelectron transfer pathways and ROS aspects of MoS2-based nanocomposites and aerogels.


Asunto(s)
Contaminantes Ambientales , Nanocompuestos , Antibacterianos/química , Aguas Residuales , Molibdeno/química , Especies Reactivas de Oxígeno , Nanocompuestos/química
3.
Toxicon ; 241: 107654, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38368956

RESUMEN

The safety of drinking water source directly affects human health. Microcystin-LR (MC-LR), a toxic and common pollutant in drinking water source, is released by algae and can impede the in-situ remediation effect of aquatic plant. Finding out the effect mechanism of MC-LR on the purification of drinking water by aquatic plant is the key to its application. This study aims to explore the performance and mechanism of MC-LR on drinking water source purification by Hydrocharis dubia (Bl.) backer. The optimum removal efficiency of NH4+-N, TP and COD were 90.7%, 93.2% and 77.3% at MC-LR concentration of 0.5 µg L-1, respectively. With the increase of MC-LR concentration, the pollutants removal rate was obviously inhibited causing by concentration-dependent. Furthermore, the growth and development of the Hydrocharis dubia (Bl.) backer roots were significantly promoted at the concentration of 0.1 µg L-1. The length, tips, surface area, and average diameter of the root increased by 71.3%, 271.4%, 265.5%, and 113.0%, respectively. Chlorophyll contents under low-concentration MC-LR show a 14.5%-15.7% promoting effect compared with the control group. The activities of POD and CAT were also stimulated with the MC-LR increasing (<1.0 µg L-1). Notably, the MDA contents increased with increasing MC-LR concentration (p < 0.01). This study indicates the effect mechanism of MC-LR on Hydrocharis dubia (Bl.) backer purification performance relies on the increased growth and enzyme activity of Hydrocharis dubia (Bl.) backer.


Asunto(s)
Agua Potable , Hydrocharitaceae , Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Agua Potable/análisis , Antioxidantes/farmacología , Microcistinas/toxicidad , Microcistinas/análisis , Toxinas Marinas , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
4.
J Environ Manage ; 348: 119354, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37864939

RESUMEN

The rapid proliferation of electronic waste (e-waste), including waste printed circuit boards (WPCBs), has exerted immense pressure on the environment. The recovery of precious metals from WPCBs not only serves as an effective means of alleviating this environmental burden but also generates economic value. This review focuses on bioleaching, an environmentally friendly method for extracting precious metals from WPCBs. Under various conditions, this method has achieved leaching rates of 30%-73% for Au and 33.8%-90% for Ag. However, there is a relative scarcity of studies on the bioleaching of precious metals from WPCBs. In this paper, we provide an overview of the current status of bioleaching for precious metals from WPCBs and describe the underlying mechanisms. We also briefly outline the influence of various process factors on leaching efficiency. While this review underscores the considerable potential of bioleaching in WPCBs applications, certain limitations hinder the engineering-scale application of the technology. Consequently, this paper describes the current enhanced processes for enhancing leaching efficiency. Overall, this review can serve as a valuable reference for future research endeavors, ultimately promoting the widespread utilization of bioleaching for the recovery of precious metals from WPCBs.


Asunto(s)
Residuos Electrónicos , Reciclaje , Metales , Residuos Electrónicos/análisis
5.
Environ Res ; 239(Pt 2): 117215, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37813135

RESUMEN

Co-pyrolysis biomass and alkaline metals can effectively improve the adsorption performance of heavy metals (HM). Nevertheless, the researchers have ignored the relationship between the change of alkaline metal morphology and adsorption during pyrolysis. In this article, according to control the pyrolysis time (30, 60, and 180 min) synthesized Magnesium (Mg) modified biochar (MBCX) by using MgCl2·6H2O and soybean straw under 400 °C. The sorption capacities of MBC60 and MBC180 for Pb2+/Cd2+ increased by 38.65%/213.29%, 44.57%/230.36%, and the selectivity coefficient of Pb2+/Cd2+ increased by 113.28%/209.49%, 213.58%/253.62%, respectively, compared with MBC30. Additionally, the characterization results demonstrated that MgO dominated the surface phases of MBC60 and MBC180, whereas MgCl2 dominated the surface phases of MBC30. Moreover, according to the results of DFT calculation, the adsorption energy (Eads) of MgO for Pb2+ (-0.537 eV) and Cd2+ (-0.347 eV) was lower than that of MgCl2 (Pb2+: 0.37 eV, Cd2+: -0.185 eV), so that, MBC60 and MBC180 had higher sorption capacities for Pb2+ and Cd2+ than MBC30. Therefore, this work provides a new sight to clear the mechanism for modified biochar by alkali metal oxide and practical and theoretical guidance for adsorbent preparation with high adsorption ability for HMs.


Asunto(s)
Cadmio , Magnesio , Plomo , Óxido de Magnesio , Adsorción , Pirólisis , Carbón Orgánico
6.
Chemosphere ; 338: 139421, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37429380

RESUMEN

Microbial metabolic activities in rhizosphere soil play a critical role in plant nutrient utilization and metal availability. However, its specific characteristics and influence on endophyte assisted phytoremediation remains unclear. In this study, an endophyte strain Bacillus paramycoides (B. paramycoides) was inoculated in the rhizosphere of Phytolacca acinosa (P. acinosa), and microbial metabolic characteristics of rhizosphere soils were analyzed using Biolog system to investigate how they influence phytoremediation performance of different types of cadmium contaminated soil. The results indicated that endophyte B. paramycoides inoculation enhanced bioavailable Cd percentage by 9-32%, resulting in the increased Cd uptake (32-40%) by P. acinosa. With endophyte inoculation, the utilization of carbon sources was significantly promoted by 4-43% and the microbial metabolic functional diversity increased by 0.4-36.8%. Especially, B. paramycoides enhanced the utilization of recalcitrant substrates carboxyl acids, phenolic compounds and polymers by 48.3-225.6%, 42.4-65.8% and 15.6-25.1%, respectively. Further, the microbial metabolic activities were significant correlated with rhizosphere soil microecology properties and impact phytoremediation performance. This study provided new insight into the microbial processes during endophyte assisted phytoremediation.


Asunto(s)
Cadmio , Contaminantes del Suelo , Cadmio/análisis , Biodegradación Ambiental , Rizosfera , Endófitos/metabolismo , Contaminantes del Suelo/análisis , Raíces de Plantas/metabolismo , Suelo/química
7.
Chemosphere ; 338: 139466, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37442390

RESUMEN

Biochar-immobilized functional bacteria Bacillus SDB4 was applied for sulfamethoxazole (SMX) and zinc (Zn2+) simultaneous removal in the bioreactor. Under the optimal operating conditions of HRT of 10 h, pH of 7.0, SMX concentration of 10 mg L-1 and Zn2+ concentration of 50 mg L-1, the removal efficiencies of SMX and Zn2+ by the immobilized reactor (IR) were 97.42% and 96.14%, respectively, 20.39% and 30.15% higher than those by free bioreactor (FR). SEM-EDS and FTIR results revealed that the functional groups and light metals on the carrier promoted the biosorption and biotransformation of SMX and Zn2+ in IR. Moreover, the improvement of SMX and Zn2+ removal might be related to the abundance enhancement of functional bacteria and genes. Bacillus SDB4 responsible for SMX and Zn2+ removal was the main strain in IR and FR. Biochar increased the relative abundance of Bacillus from 32.12% in FR to 38.73% in IR and improved the abundances of functional genes (such as carbohydrate metabolism, replication and repair and membrane transport) by 1.82%-11.04%. The correlations among the physicochemical properties, microbial communities, functional genes and SMX-Zn2+ co-contaminant removal proposed new insights into the mechanisms of biochar enhanced microbial removal of antibiotics and heavy metals in biochar-immobilized bioreactors.


Asunto(s)
Sulfametoxazol , Zinc , Sulfametoxazol/química , Antibacterianos , Reactores Biológicos/microbiología
8.
J Environ Manage ; 344: 118511, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37418918

RESUMEN

Recovering key metals from secondary sources is an indispensable strategy for preventing metal shortages and reducing the risk of toxic releases into the environment. Metal mineral resources continue to be depleted and the global supply chain will face metal scarcity. The use of microorganisms for metal transformation plays an important role in the bioremediation of secondary resources. It shows great potential for development due to its compatibility with the environment and possible cost effectiveness. The results of the study show that the influence of bioleaching processes and effects are mainly analyzed from microorganisms, mineral properties and leaching environmental conditions. In this review article, we elucidate light on the role and mechanisms of fungi and bacteria involved in extracting different metals from tailings, including acidolysis, complexolysis, redoxolysis, and bioaccumulation. Key process parameters that affect the efficiency based bioleaching are discussed, providing referenceable pathways to improve leaching efficiency. The investigation concludes that exploitation of the functional genetic role of microorganisms and their optimal growth conditions can achieve efficient leaching of metals. It was found that the improvement of microbial performance was achieved at the level of mutagenesis breeding, mixed culture microorganisms, and genetics. Moreover, control of leaching system parameters and removal of passivation films can be achieved by adding biochar and surfactants in the leaching system as an effective means to improve tailings leaching. Knowledge about cells with minerals and their detailed interactions at the molecular level is still relatively scarce and the field could be deepened and this area needs to be further explored in the future. The challenges and the key issues associated with the bioleaching technology development are elaborated as a green and effective bioremediation strategy for the environment and prospects for imminent are also highlighted.


Asunto(s)
Metales Pesados , Fitomejoramiento , Minerales , Bacterias/metabolismo , Hongos/metabolismo
9.
J Hazard Mater ; 456: 131662, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37247490

RESUMEN

The effective and cheap remediation of ammonia (NH+4) and multiple heavy metals from landfill leachate is currently a grand challenge. In this study, Paracoccus denitrificans AC-3, a bacterial strain capable of heterotrophic nitrification aerobic denitrification (HNAD) and carbonate precipitation, exhibited good tolerance to a variety of heavy metals and could remove 99.70% of NH+4, 99.89% of zinc (Zn2+), 97.42% of cadmium (Cd2+) and 46.19% of nickel (Ni2+) simultaneously after 24 h of incubation. The conversion pathway of NH+4 by strain AC-3 was dominated by assimilation (84.68%), followed by HNAD (14.93%), and the increase in environmental pH was mainly dependent on assimilation rather than HNAD. Calcium (Ca2+) primarily played four roles in heavy metal mineralization: (ⅰ) improving bacterial tolerance to heavy metals; (ⅱ) ensuring the HNAD capacity of strain AC-3; (ⅲ) co-precipitating with heavy metals; and (ⅳ) precipitating into calcite to adsorb heavy metals. The heavy metals removal mechanisms were mainly calcite adsorption and formation of carbonate and hydroxide precipitation for Zn2+, co-precipitation for Cd2+, and adsorption for Ni2+. The Zn2+, Cd2+, and Ni2+ precipitates displayed unique morphologies. This research provided a promising biological resource for the simultaneous remediation of NH+4 and heavy metals from landfill leachate.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Cadmio/metabolismo , Contaminantes Químicos del Agua/análisis , Amoníaco , Carbonatos , Carbonato de Calcio/metabolismo
10.
Chemosphere ; 331: 138841, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37142105

RESUMEN

Iron (Fe)/iron oxide-modified biochar has practicable adsorption capability for phosphorus (P), but it is expensive. In this study, we synthesized novel low-cost and eco-friendly adsorbents co-pyrolyzed biochars using Fe-rich red mud (RM) and peanut shell (PS) wastes via a one-step pyrolysis process for removing P from pickling wastewater. The preparation conditions (heating rate, pyrolysis temperature, and feedstock ratio) and P adsorption behaviors were systematically investigated. In addition, a series of characterization and approximate site energy distribution (ASED) analyses were conducted to understand the P adsorption mechanisms. The magnetic biochar (BR7P3) with m (RM):m (PS) of 7:3 prepared at 900°C and 10 °C/min had a high surface area (164.43 m2/g) and different abundant ions (including Fe3+, and Al3+). In addition, BR7P3 exhibited the best P removal capability (142.6 mg/g). The Fe2O3 from RM was successfully reduced to Fe0, which was easily oxidized as Fe3+ to precipitate with H2PO4-. The electrostatic effect, Fe-O-P bonding, and surface precipitation were the main mechanisms of P removal. ASED analyses revealed that high distribution frequency and solution temperature led to a high P adsorption rate of the adsorbent. Therefore, this study provides new insight into the waste-to-wealth strategy by transforming PS and RM into mineral-biomass biochar with excellent P adsorption capability and environmental adaptability.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Adsorción , Arachis , Carbón Orgánico , Hierro , Fosfatos , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
11.
Environ Sci Pollut Res Int ; 30(23): 64233-64245, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37061639

RESUMEN

It is challenging to separate the materials for treating arsenic contamination of soil and water from systems. The natural magnetite covered with Fe-Mn bimetallic (oxyhydr)oxide (Fe-Mn MSM) was effectively created in this study, and its potential use in removing As from water and soil was investigated. Batch adsorption studies showed that the As(V) adsorption on Fe-Mn MSM could achieve equilibrium after 120 min when the initial As(V) concentration was 39.85 mg/L. The calculated maximum adsorption of Fe-Mn MSM for As(V) was 17.94 mg/g at 20 °C. The mechanism of As(V) adsorption was confirmed to be a combination of ligand exchange and electrostatic attraction by the outcomes of FTIR analysis, SEM, and batch adsorption tests. Fe-Mn MSM can also be a successful amendment for cleaning up As-polluted soil. The 5% Fe-Mn MSM treatment group had the lowest exchangeable fraction of As (EX-As) concentration, 0.039 mg/kg (8.3% of initial EX-As), after 40 days. Magnetic separation could be used to quickly and completely recover the used Fe-Mn MSM from the soil. EX-As was present in higher concentrations on Fe-Mn MSM than that of the original soil. As a result, this work offers a strategy that may be put into practice to cheaply remove As from soil and water while also encouraging the reuse of natural magnetite.


Asunto(s)
Arsénico , Contaminantes Químicos del Agua , Óxidos/análisis , Óxido Ferrosoférrico , Suelo , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno , Agua/análisis , Arsénico/análisis , Contaminación del Agua/análisis , Adsorción
12.
Chemosphere ; 319: 138010, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36731666

RESUMEN

Modified biochars has great potential for removing heavy metals from aquatic environments, but the removal of heavy metals by biochars is usually significantly affected by the co-presence of the macro amount of metal ions, such as Ca. Enhancing the ion exchange capacity of biochar by increasing its alkali metal content is a very prospective method to improve its selectivity. In this paper, MgO loaded biochar (MBC) was synthesized by co-pyrolysis of soybean straw and MgCl2·6H2O for selective remove Pb and Cd from calcium-rich wastewater. MBC exhibited excellent selective adsorption performance for Pb and Cd in calcium-rich wastewater due to the successful loading of MgO. The adsorption capacities of MBC for Pb and Cd were 582.57 and 167.40 mg/g, and the removal efficiency of Ca below 2.5% with an initial concentration of 800 mg/L. The ion exchange capacities of Pb and Cd enhanced almost 27 and 23 times than BC. By analyzing the results of BET, XRD, SEM-EDS, XPS and FTIR, the adsorption mechanisms of MBC were mainly including ion exchange, precipitation with minerals, and interaction with oxygen-containing functional groups. The easy preparation method and high selective adsorption capacity makes MBC an ideal alternative for efficiently selective removal Pb and Cd from calcium-rich wastewater.


Asunto(s)
Cadmio , Metales Pesados , Cadmio/análisis , Calcio , Glycine max , Óxido de Magnesio , Plomo/análisis , Aguas Residuales , Carbón Orgánico , Metales Pesados/análisis , Calcio de la Dieta , Adsorción
13.
Chemosphere ; 320: 138052, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36739989

RESUMEN

Amendment-assisted soilless revegetation is a promissing ecological restoration method of mine tailings because of its eco-friendliness and low-cost. However, it is difficult to establish the plant community during ecological restoration because of its nutrient deficiency and heavy metal toxicity. In this study, the complex amendment, consisting of 1% peat, 1% sludge and 4% bentonite, was used to assist tall fescue to revegetate gold mine tailings. The variation in physicochemical characteristics and microbial community diversity and composition of rhizosphere tailings were investigated. The complex amendments significantly promoted tall fescue growth with an increase of 35.33% in shoot length and 27.19% in fresh weight. The improved plant growth was attributed to the reduction in heavy metal accumulation and the variation in the characteristics of rhizosphere tailing microecology. The heavy metal concentrations in plant tissues were decreased by 27.71-53.44% in the amended groups. Compared with the control, the available nitrogen (N), phosphorus (P) and potassium (K) levels in TA (without plant cultivation) and TPA (with plant cultivation) were also enhanced by 36.67-49.09% and 42.21-71.47%, respectively. Besides, the amendments introduced more exclusive operational taxonomic units (OTU) and increased the relative abundance of ecologically beneficial microbes in the rhizosphere. Overall, this study provides insight into amendment-assisted soilless revegetation and its effects on microecology to expand ecological restoration of gold mine tailings.


Asunto(s)
Metales Pesados , Microbiota , Contaminantes del Suelo , Oro , Rizosfera , Biodegradación Ambiental , Plantas , Suelo/química , Contaminantes del Suelo/análisis
15.
Environ Res ; 217: 114871, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36423666

RESUMEN

High-sulfur coal gangue (HS-CG) is extremely unstable in the environment, releasing acid mine drainage with high concentrations of harmful heavy metals (HMs). The effects of HS-CG particle size, leaching solution pH, Fe3+ and acidophilic microorganisms on the release of HMs from the HS-CG and their kinetic behavior were studied using static leaching tests. The results showed that the smaller the particle size of HS-CG and the more acidic the leaching solution, the greater the release of HMs. As the chemical catalyst, the external addition of 300 mg/L Fe3+ can make the leaching amount of Fe, Mn, Cu, Zn, Ni, Cr reached 10,224.93, 93.88, 52.25, 11.56, 7.55, 2.97 mg/kg respectively, and the release of HMs was 1.36-2.60 times of the tests without the addition of iron. However, the concentration of Fe3+ above 800 mg/L promoted the production of jarosite on the surface of HS-CG, which led to decrease in the release of HMs. The HMs forms in HS-CG were different, while the effect of microorganisms on the leaching of Zn (54.99%) and Mn (52.35%) in the higher acid soluble fraction was more obvious, their leaching amount reached 87.21 and 107.58 mg/kg respectively. The kinetic analysis indicated that the rate-controlling step was mainly redox reaction at first, and then gradually controlled by the diffusion of ash layer. So, the kinetic equation controlled jointly by two rate-controlling stages has been proposed to describe the dissolution of HS-CG. This work help develop pertinent strategies for mine area remediation via controlling the HMs generation path.


Asunto(s)
Carbón Mineral , Metales Pesados , Cinética , Metales Pesados/análisis , Hierro , Azufre , Ceniza del Carbón
16.
Bioresour Technol ; 369: 128263, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36343782

RESUMEN

A one-step method of preparation using a novel nitrogen (N)-doped Fe-rich biochar (N5-CB) resulted in a maximum adsorption capacity (314.52 mg/g) compared with Fe-rich biochar (CB, 104.044 mg/g). It can be used to adsorb phosphate (P) efficiently. Additionally, the adsorption kinetics, isotherms, and thermodynamics indicated that the adsorption of P onto N5-CB was mainly mediated via multilayer coverage, endothermic, spontaneous, and physical mechanisms. The main adsorption mechanisms include Fe-P precipitation, FeOP bonding, and electronic effect. Further, the highly active Fe-Nx sites and graphitic N induced by N doping were the dominant driving force underlying enhanced P adsorption. Active Fe-Nx sites resulted in a positively-charged carbon structure and P absorption via electrostatic effect. Based on the simple method of pyrolysis, N5-CB can be used in P removal from pickling wastewater with excellent adsorption capacity and remarkable recyclability.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Fosfatos , Adsorción , Pirólisis , Carbón Orgánico/química , Cinética , Contaminantes Químicos del Agua/química
17.
Environ Sci Pollut Res Int ; 30(10): 26191-26207, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36355240

RESUMEN

In this study, sodium lignosulfonate modified illite (LS-ILT), an environmentally friendly adsorbent, was prepared by hydrothermal modification. An extensive study of Pb(II) and Cd(II) adsorption behavior and the mechanisms were conducted by evaluating the effects of initial pH value, sorbents dosage, and initial concentration of Pb(II) and Cd(II). Results showed that the adsorption characteristics of Pb(II) and Cd(II) by LS-ILT were well described by quasi-second-order kinetics and the Freundlich model, and the maximum adsorption capacity of Pb(II) and Cd(II) was 42.3 mg/g and 17.0 mg/g, respectively. The optimal application conditions for adsorption equilibrium were the dosage of 4 g/L and reaction pH = 5.5-5.8. The adsorption stability of Pb(II) by LS-ILT was better than that of Cd(II), and most of the existence of coexisting cations had no obvious inhibitory effect on the removal of Pb(II) and Cd(II). Furthermore, the dynamic adsorption results showed that LS-ILT can meet the ultra-low emission standard, and the adsorption capacity could maintain over 50% after four cycles, further providing certain guiding significance for the treatment of wastewater with ultra-low concentrations of heavy metals Pb(II) and Cd(II).


Asunto(s)
Cadmio , Contaminantes Químicos del Agua , Plomo , Sodio , Adsorción , Contaminantes Químicos del Agua/análisis , Cinética , Concentración de Iones de Hidrógeno
18.
J Hazard Mater ; 443(Pt B): 130388, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36444073

RESUMEN

Vanadium (V) contamination of soils poses potential risks to humans and ecosystems. This study was conducted to evaluate the effects of endophyte-assisted phytoremediation and to determine the mechanisms involved in V detoxification and plant growth promotion. Results showed that the endophytic bacterium Serratia marcescens PRE01 could successfully colonize the roots and increase the total V uptake of Pteris vittata by 25.4 %, with higher plant biomass and V accumulation in roots. Endophyte inoculation significantly improved the secretion of phytic, malic, and oxalic acids and accelerated FeVO4 dissolution and subsequent Fe and V uptake in the rhizosphere. Under V stress without inoculation, V removed by shoot uptake, root uptake, and root surface adsorption accounted for 21.76 %, 42.14 %, and 30.93 % of the total V removal efficiency, respectively. To detoxify excess V, PRE01 effectively strengthened the adsorption of V on the root surface, with an increase in its contribution to the total V removal efficiency from 30.93 % to 38.10 %. Furthermore, beneficial endophytes could alleviate oxidative damage caused by V stress by reinforcing the plant antioxidant system and promoting V(V) reduction in root tissues. These findings clearly reveal that inoculation with endophytes is a promising method for modulating multiple strategies to enhance the phytoremediation of V-contaminated soils.


Asunto(s)
Pteris , Humanos , Endófitos , Vanadio , Biodegradación Ambiental , Ecosistema , Suelo
19.
Bioresour Technol ; 363: 127889, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36067894

RESUMEN

Iron-loaded porous biochar (FPBC) was synthesized by co-pyrolysis method using sawdust and potassium ferrate at 500 (FPBC500) and 800°C (FPBC800), then characterized and applied to eliminate antimonite (Sb(III)) and antimonate (Sb(V)) in aqueous. Due to alkali erosion on feedstock and K/Fe-oxides attacking carbon, FPBC800 obtained a larger specific surface area (SSA) (515.49 m2·g-1) that was 5.48-fold that of PFBC500, meaning the exposure of more active sites. Fe3O4 was formed on FPBC500, but Fe0 and Fe3C were generated on FPBC800. FPBC800 showed the optimal sorption performance for Sb(III) (144.48 mg·g-1) and Sb(V) (45.29 mg·g-1), which were much higher than that of FPBC500. Noteworthily, Sb(III) anchored on FPBC was oxidized to Sb(V) with less ecotoxicity; moreover, FPBC800 with Fe0 showed stronger oxidization. Although pH-dependent sorption of Sb(III)/Sb(V) on FPBC occurred, the resistance to environmental factors showed a potential for eliminating actual pollution, demonstrating an easy-to-operate construction strategy for modified biochar.


Asunto(s)
Antimonio , Hierro , Adsorción , Antimonio/química , Carbono , Carbón Orgánico , Hierro/química , Porosidad , Temperatura , Agua
20.
J Environ Manage ; 320: 115835, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35952563

RESUMEN

Acid mine drainage (AMD) is a significant environmental problem caused by the oxidation of pyrite and other metal sulfide ores. Organosilane passivation is an effective strategy to inhibit pyrite oxidation. However, synthetic organic silane passivation agents generally require temperatures of 50-80 °C, resulting in high energy consumption and high synthesis cost. In this study, a 3-aminopropyltrimethoxysilane -methyltrimethoxysilane (APS-MTMS) coatings was successfully prepared at ambient temperatures of 15-40 °C as a passivation agent to inhibit pyrite oxidation. Chemical leaching tests were used to study the inhibition performance of APS-MTMS for pyrite oxidation. The experimental results showed that the release of the total Fe from APS-MTMS-coated pyrite was 11.31 mg/L after chemical oxidation for 7 hours, and the passivation rate can reach 77.78%. The contact angle of the APS-MTMS-coated pyrite was significantly larger (140.4°) than that of the bare pyrite (58.8°), indicating that APS-MTMS prompted the formation of a superhydrophobic surface of pyrite, improving the oxidation resistance. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were applied to probe the interaction mechanism of APS-MTMS with pyrite. The results indicated that APS accelerated the Si-O-Si formation by amino protonation and enriched a crosslinked network of Si-O-Si and Fe-O-Si on the pyrite surface to prevent pyrite oxidation. This study provides a novel method for preparing organosilane passivation materials at ambient temperatures for AMD control.


Asunto(s)
Hierro , Compuestos de Organosilicio , Ácidos/química , Hierro/química , Oxidación-Reducción , Sulfuros/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...